BACKTRACKING ALGORITHM – KNAPSACK PROBLEM
Aim:
To write a C program to solve the
knapsack problem using backtracking algorithm
Algorithm:
Step 1: Declare
the variables, array size and functions
Step
2: Get the value of number of objects and size of knapsack
Step 3: Enter
weight and profit of objects
Step 4: Assign
the initial values
Step 5: Call the
necessary function and display the profit
Step 6: End of
program
Coding:
#include <stdio.h>
#define MAXWEIGHT 100
int n = 3; /* The number of objects */
int c[10] = {8, 6, 4}; /* c[i] is the *COST* of the ith object; i.e. what
YOU PAY to take the object */
int v[10] = {16, 10, 7}; /* v[i] is the *VALUE* of the ith object; i.e.
what YOU GET for taking the object */
int W = 10; /* The maximum weight you can take */
void fill_sack()
{
int a[MAXWEIGHT]; /* a[i] holds the maximum value that can be obtained
using at most i weight */
int last_added[MAXWEIGHT]; /* I use this to calculate which object were
added */
int i, j;
int aux;
for (i = 0; i <= W; ++i)
{
a[i] = 0;
last_added[i] = -1;
}
a[0] = 0;
for (i = 1; i <= W; ++i)
for (j = 0; j < n; ++j)
if ((c[j] <= i) && (a[i] < a[i - c[j]] + v[j]))
{
a[i] = a[i - c[j]] + v[j];
last_added[i] = j;
}
for (i = 0; i <= W; ++i)
if (last_added[i] != -1)
printf("Weight %d; Benefit: %d; To reach this weight I added object %d (%d$ %dKg) to weight %d.\n", i, a[i], last_added[i] + 1, v[last_added[i]], c[last_added[i]], i - c[last_added[i]]);
else
printf("Weight %d; Benefit: 0; Can't reach this exact weight.\n", i);
printf("---\n");
aux = W;
while ((aux > 0) && (last_added[aux] != -1)) {
printf("Added object %d (%d$ %dKg). Space left: %d\n", last_added[aux] + 1, v[last_added[aux]], c[last_added[aux]], aux - c[last_added[aux]]);
aux -= c[last_added[aux]];
}
printf("Total value added: %d$\n", a[W]);
}
int main(int argc, char *argv[]) {
fill_sack();
return 0;
}
No comments:
Post a Comment