affiliate marketing

Saturday, 17 December 2011

Parse Tree


Inner nodes of a parse tree are non-terminal symbols.
  The leaves of a parse tree are terminal symbols.
  A parse tree can be seen as a graphical representation of a derivation


Ambiguity


A grammar produces more than one parse tree for a sentence is called as an ambiguous grammar.
E Þ E+E Þ id+E Þ id+E*E 
    Þ id+id*E Þ id+id*id







E Þ E*E Þ E+E*E Þ id+E*E
    Þ id+id*E Þ id+id*id


Ambiguous grammars (because of ambiguous operators) can be disambiguated according to the precedence and associativity rules.
  E ® E+E  |  E*E  |  E^E  |  id  |  (E)
      disambiguate the grammar
  precedence:    ^   (right to left)
  *   (left to right)
  +   (left to right)
  E ® E+T  |  T
  T ® T*F  |  F
  F ® G^F  |  G
  G ® id  |  (E)

Left Recursion
A grammar is  left recursive  if it has a non-terminal   “A” such that there is  a derivation.
 
   A Þ Aa  for some string a
 
Top-down parsing techniques cannot handle left-recursive grammars.
So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-recursive.
The left-recursion may appear in a single step of the derivation (immediate left-recursion), or may appear in more than one step of the derivation.
Immediate Left-Recursion
A ® A ab       where b does not start with A
  ß  eliminate immediate left recursion
A ® b A
A ® a A  |  e   an equivalent grammar
A ® A a1 | ... | A am | b1 | ... | bn   where b1 ... bn do not start with A
  ß  eliminate immediate left recursion
A ® b1 A’  | ... | bn A
A ® a1 A  | ... | am A  | e   an equivalent grammar

No comments:

Post a Comment