affiliate marketing

Saturday, 10 December 2011

Bubble sort


Bubble sort
            Let a be an array of n numbers. Our aim is to sort the numbers in the array in ascending order. The principle is to scan the array sequentially n-1 times and in each scan do the following steps.
Scan – 1
i)                    Take the first element and compare it with the second element. If it is small don’t interchange; or else interchange the two elements.
ii)                  Then compare the second element with the third element. If it is small don’t interchange; or else interchange the two elements.
iii)                This process is continued till (n-1)th element is compared with the nth element.
iv)                At the end of the first scan, the highest element comes to the nth position.
Scan – 2
i)                    Take the first element and compare it with the second element. If it is small don’t interchange; or else interchange the two elements.
ii)                  Then compare the second element with the third element. If it is small don’t interchange; or else interchange the two elements.
iii)                This process is continued till (n-2)th element is compared with the (n-1)th element.
iv)                At the end of the second scan, the highest element comes to the (n-1)th position.
Scan – (n-1)
            In the (n-1)th scan first element is compared with the second element.
            Arrange the given array of numbers in ascending order. Let the numbers in the array be
            a[1] = 43 a[2] = 72 a[3] = 10 a[4] = 23 a[5] = 1
            Let      i – is a pointer which counts the number of scan
                       j – is a pointer which is used to compare the first and second element.
                        a[1]        a[2]     a[3]      a[4]      a[5]       j            j+1      i
\           Scan- 1
                        43        72        10        23        1          1          2          1

                                                - first is small no interchange
                        43        72        10        23        1          2          3          1

                                                            - first is big interchange
                        43        10        72        23        1          3          4          1

                                                                  - interchange
                         43       10        23        72        1          4          5          1
 
722
 
                                                                                    - interchange

                         43       10        23        1
72
 
 
Scan – 2
                        43        10        23        1                      1          2          2

72
 
                                                - interchange
                        10        43        23        1                      2          3          2

72
 
                                                            - interchange
                        10        23        43        1                      3          4          2

43
 
72
 
                                                                        - interchange
                        10        23        1                                        
72
 
43
 
 
 Scan – 3
                        10        23        1                                  1          2          3

72
 
43
 
                                                - no interchange
                        10        23        1                                    2        3          3
 
72
 
43
 
23
 
                                                            - interchange
                        10        1                                               
72
 
43
 
23
 
Scan – 4
                        10        1                                                1        2          4
 
72
 
43
 
23
 
10
 
1
 
                                                - interchange
                                                                                     
           

The sorted list is
                        1          10        23        43        72. It is clear from the above that for 5 data we need only 4 scan.
Procedure
            bubble(a, n)     /* a is the name of the array to be sorted and n is the maximum numbers */
            {
                        for i = 1 to n-1 do        // loop to control the number of scan
                         for j = 1 to i+1 do
                           if (a[j] > a[j+1]) then    // loop to compare elements.
                                    {
                                                temp = a[j] ;
                                                    a[j] = a[j+1] ;
                                                    a[j+1] = temp ;
                          }
                      }
Complexity
            Let f(n) be the number of comparisons required to sort the given n number using bubble sort. Then
            F(n) = sum of comparisons required in each scan
            For I = 1, we required n-1 comparison
            For I = 2, we required n-2 comparison
            For I = n-1, we required 1 comparison
Therefore f(n) = (n-1) + (n-2) + ….. + 2 + 1
                        = (n-1) n

No comments:

Post a Comment